
CS Core Sequence Outcomes Notes & Definitions

1

Overview This document is an attempt to build a shared understanding of the knowledge and skills expected from
a student who completes the core CS sequence enshrined in the CS MTM.

CS205 was developed intentionally for the MTM and has an existing proscribed list of outcomes
(available on the OCCC website). Thus it is not included in this document and topics which it covers (low
level & systems programming) are not included here.

Document Tabs/Pages

Programming These are generally taught in CS161/162, though some topics may drift into or be formalized in data
structures

Analysis Collections
Algorithms

These are generally considered CS260 topics. However, due to the amount of material present, it is
common (if not essential) to begin teaching some of them in CS162.

PlatformsTools Essential knowledge and skills that are not associated with any particular course but expected from
someone who has completed the MTM.

Importance Levels How important the topic is in the overal curriculum.

Essential Students should be getting all of these topics. Skipping this is expected to directly affect performance in
later courses.

Recommended Important concepts. However, may not be possible in all languages; may be less critical for future
classes.

Elective Useful, but skippable. May not be possible in all languages. Or may not be foundational for later work.

Proficiency Levels What level of proficiency is expected at this point in a student's education.

Proficient Comfortable and confident with these topics. While they may continue to develop this skill/knowledge,
they should be entirely comfortable with the topic and will likely not recieve further formal instruction in it.

Competent Can use these ideas/skills at a basic level, lacks fluency in them. These are often skills expected to be
developed futher in later courses.

Exposure Is aware of general concept. Likely does not have a deep level of understanding or any practical
proficiency.

Big O Expectations A value in this column indicates how fluent students are expected to be reasoning about Big O for this
topic, which may differ from their fluency implementing/using the topic.

Proficient Can make a clear case for why a BigO is what it is and/or analyze new algorithms based on this. Does
not imply ability to write a mathematical proof.

Competent Can use these ideas/skills at a basic level, lacks fluency in them. These are often skills expected to be
developed futher in later courses.

Exposure Is aware of general concept. Likely does not have a deep level of understanding or any practical
proficiency.

Command Line
Expectations

A value in this column indicates how fluent students are expected to be doing these tasks from the
command prompt as opposed to using a GUI interface.

Competent Can perform these skills from the command prompt. Can do the basics without reference. Likely needs
to refer to documentation to do anything complex.

Exposure Knows it can be done. Would likely need to refer to documentation to do even the basics.

CS Core Sequence Outcomes Notes & Definitions

2

Contributors
Yong Bakos OSU-Cascades

Lucas Cordova WOU
Karla Fant PSU

Breeann Flesch WOU
Kathleen Freeman UofO

Tim Harrison EOU
Gayathridevi Iyer PCC

Doug Jones PCC
Troy Lanning Klamath CC

Andrew Scholer Chemeketa CC
Robert Surton Chemeketa CC
Ken Swartwout COCC
Michal Young UofO

CS Core Sequence Outcomes Programming

3

Category Outcome Importance Proficiency Dissent
Write and execute a
program

Given specifications, write a reasonable-sized program without using
external references. Essential Proficient

Write and execute a
program

Decompose a program into modules at a source file level. Organize source
files using any relevant language features (e.g. including headers or
importing modules).

Essential Competent

Discuss computing
problems among
humans

Read an existing program, and explain what purpose it serves, what it does,
and how it operates. Essential Proficient

Discuss computing
problems among
humans

Value consistent programming style. Adapt and to and use existing style of a
codebase or team. Essential Proficient

Discuss computing
problems among
humans

Explain requirements, design decisions, and coding decisions, using source
code (variable names, conventions, etc.), programming comments, and
documentation.

Essential Competent

Discuss computing
problems among
humans

Justify the way a program is decomposed, by analyzing an existing set of
modules to describe its benefits and drawbacks, by arguing for why a
decomposition was designed the way it was, and by improving a
decomposition when warranted.

Essential Exposure

Discuss computing
problems among
humans

Collaborate with others through code reviews or pair programming.
Essential Proficient

Not covered at EOU.
Discuss computing
problems among
humans

Use resources and peers in a way that avoids plagiarism.
Essential Proficient

Reason about values
in a program.

Distinguish a value, a location that stores a value, and an identifier that
names a location or value. Essential Proficient

Reason about values
in a program.

Analyze an identifier for type, that is, the set of values it might hold and
properties all those values have in common. Use provided features for
annotating types.

Essential Proficient

Reason about values
in a program.

Use references to data, such as with a pointer whose value represents the
location of the data, or a reference that is an alias for another identifier for
the data. Reason about aliasing.

Essential Proficient

Reason about values
in a program.

Determine whether an identifier in a program is a variable, which might hold
more than one value over the running of the program, or a constant, which
always has a fixed value. Use provided features for distinguishing variables
and constants.

Essential Proficient

Reason about values
in a program.

Assign appropriate scope and lifetime to each variable in a program. Use
provided features for annotating scope and lifetime. Essential Proficient

Debug a program. Interact with a program in order to confirm expected behaviors and attempt
to trigger faults. Essential Proficient

Debug a program. Simulate a program's steps mentally or in writing to predict behavior. Essential Proficient

Debug a program. Add assertions and logging to a program to observe computations and
isolate unexpected behavior. Essential Proficient

Debug a program. Run a program under a debugger to observe computations and isolate
unexpected behavior. Essential Proficient

Debug a program. Recognize common runtime errors and recall how to approach resolving
them. Essential Proficient

Debug a program. Recognize common static errors, including syntax errors, and recall how to
approach resolving them. Essential Proficient

Debug a program. Distinguish logic errors, such as a programmer's mistake, from exceptional
conditions, such as a file not existing. Essential Proficient

Debug a program. Based on a specification, hypothesize what cases are likely to expose faults
in an implementation and write automated tests to exercise them. Essential Proficient

Debug a program. Based on an existing unit of a program, hypothesize what faults it contains
and write automated tests designed to trigger them. Essential Proficient

Debug a program. Perform test-driven development by writing tests for requirements before
modifying a program to satisfy those requirements. Elective Exposure

Represent the data
from a real-world
problem domain within
a program.

Use provided Booleans and logical operators and relations.

Essential Proficient

Represent the data
from a real-world
problem domain within
a program.

Use provided numbers (including naturals, integers, and rationals), arithmetic
operators, and ordering relations. Essential Proficient

Represent the data
from a real-world
problem domain within
a program.

Use provided product datatypes, such as record, struct, tuple, named tuple,
object attributes, etc. Essential Proficient

CS Core Sequence Outcomes Programming

4

Category Outcome Importance Proficiency Dissent
Represent the data
from a real-world
problem domain within
a program.

Use provided sum datatypes, such as enum, union, optional/maybe, etc.

Elective Competent

Not covered at EOU.
Represent the data
from a real-world
problem domain within
a program.

Use provided text datatypes (i.e. strings).

Essential Proficient

Represent the data
from a real-world
problem domain within
a program.

Write programs that correctly handle character sets, text encoding,
internationalization, and localization. Elective Exposure

Not covered at EOU.
Represent the data
from a real-world
problem domain within
a program.

Use provided sequential data structures, such as arrays, including
multidimensional arrays Essential Proficient

Represent the data
from a real-world
problem domain within
a program.

Use provided mapping data structures, such as maps/dictionaries

Essential Competent

Connect a program
with its environment.

Read and write data on standard streams such as a console. Essential Proficient

Connect a program
with its environment.

Read and write text files in external storage. Understand the concept of
working directory. Essential Proficient

Connect a program
with its environment.

Detect and handle exceptional conditions (e.g. missing file, invalid input)
within a program (using return value, errno, exceptions, etc.). Essential Competent

Apply structured
programming
principles.

Decompose a problem into blocks of sequential code, functions, and
procedures Essential Proficient

Apply structured
programming
principles.

Describe a function or block of code in terms of pre- and post-conditions.
Essential Exposure

Apply structured
programming
principles.

Recognize repetition in a codebase and identify how to refactor the instances
into calls to a common function. Essential Proficient

Apply structured
programming
principles.

Distinguish statements and expressions
Essential Proficient

Apply structured
programming
principles.

Use provided conditional/selection statements.
Essential Proficient

Apply structured
programming
principles.

Use provided iteration/repetition/looping statements.
Essential Proficient

Apply structured
programming
principles.

Implement and trace recursive solutions to problems
Essential Proficient

Apply structured
programming
principles.

Locate and apply existing libraries and algorithms to solve problems, making
use of built-in functions and data structures when appropriate. Essential Exposure

Apply object-oriented
programming
principles.

Decompose a program into objects that encapsulate state and behavior.
Essential Competent

Apply object-oriented
programming
principles.

Connect objects using composition and messages/methods, while using
provided features to hide internal details of data representation. Essential Exposure

Apply object-oriented
programming
principles.

Extend and reuse parts of a program, using provided features for inheritance,
polymorphism, and genericity. Essential Exposure

Not covered at PSU
Apply object-oriented
programming
principles.

Understand the complexities associated with multiple inheritance. It is not
assumed students will know techniques for doing it other than possibly via
idioms like interfaces or mixins.

Essential Exposure Not covered at EOU.
Not covered at PSU.

Apply object-oriented
programming
principles.

Identify how abstract base classes and interfaces differ from normal base
classes. Use them appropriately in designing a simple inheritance heirarchy. Essential Exposure

Not covered at PSU
Apply object-oriented
programming
principles.

Distinguish static and dynamic dispatch, use provided features for both, and
justify deciding between them. Essential Exposure Not covered at EOU.

Not covered at PSU
Apply object-oriented
programming
principles.

Use libraries written using object-oriented programming in a correct,
idiomatic way. Essential Competent

Not expected by PSU

CS Core Sequence Outcomes Programming

5

Category Outcome Importance Proficiency Dissent
Generalize
understanding of
programming.

Compare how a programming language feature is used in at least two
languages that have it. Essential Competent

CS Core Sequence Outcomes AnalysisCollectionsAlgorithms

6

Category Outcome Importance Proficiency BigO Expectations Dissent

Abstract Analysis Classify and rank common algorithms and data structure operations by asymptotic
time complexity. Essential Competent

Abstract Analysis Understand the different cases for which complexity can be analyzed (best, worst,
average) including basic amortized analysis (insertEnd in an array based list). Essential Competent EOU only covers BigO

Abstract Analysis Algebraically manipulate standard notations for complexity. (Recognize that n(3n +
2) => 3n^2 + 2n => O(n^2)). Essential Competent

Abstract Analysis
Identify the asymptotic complexity of new algorithms involving standard operations
on array, linked list, binary search tree, and hash table. Select appropriate tools
based on time complexity

Essential Proficient

Abstract Analysis
Correctly identify the resources/operations to be counted in complexity analysis. e.
g. Given a list of 10,000 numbers, but only 500 unique values, correctly reason
about the efficency of building a set.

Essential Competent

Abstract Analysis
Describe the situations where asymptotic time complexity fails to capture important
differences in algorithms. e.g. Small problem sizes and large constant factors
(especially for algorithms in the same BigO category)

Essential Competent

Abstract Analysis Discuss considerations other than time complexity that might be used to select an
algorithm: space complexity, programming time, maintainability, etc... Essential Exposure EOU saves for Algorithms

Searching & Sorting Implement linear and binary searches Essential Proficient

Searching & Sorting Describe different characteristics for sorting algorithms including stability, in-place,
adaptivity, partial sorting. Select appropriate algorithms based on these criteria Essential Proficient

Searching & Sorting Implement quadratic sorts - selection, insertion. Essential Proficient Proficient
Searching & Sorting Implement mergesort and quicksort. Essential Proficient Proficient Not covered at EOU, UO
Searching & Sorting Describe heapsort (Essential) and implement it (Recommended) Essential Exposure Not covered at EOU
Searching & Sorting Describe the logic of hybrid sorting algorithms (introsort, Timsort) Recommended Exposure Not covered at EOU

Searching & Sorting Describe non-comparison based sorting algorithms (bucket sort/radix sort) and
identify situations in which they are appropriate Recommended Exposure Not covered at EOU

General Data Structures Recognize the difference between an Abstract Data Type and an implementation of
that ADT. Essential Proficient

General Data Structures Describe expected operations for the following Abstract Data Types: list, sorted list,
stack, queue, set, table. Essential Proficient

General Data Structures Describe expected operations for the following Abstract Data Types: deque. Recommended Proficient

General Data Structures
Reason about different implementations of an abstract data type. Identify the
contraints of implementations and recognize implicit vs explicit structure
(representing a heap with an array; maintaining a sorted list).

Essential Competence

General Data Structures Implement static or dynamically sized containers. Reason about complexities
related to resizing a container and possible optimizations for a static container. Essential Competence Competence

General Data Structures Build nested data structures using arrays and lists. (e.g. array of lists that might be
used to implement a hash table) Essential Competence Exposure Not covered at EOU

General Data Structures Implement shallow or deep copies of data structures and choose the appropriate
type of copy for a particular job. Essential Proficient

General Data Structures Use features of a language to create a generic data structure. (i.e. a LinkedList that
can hold any data type, not just a IntegerLinkedList) Essential Competence

General Data Structures Recognize iterator concepts and how to use them to write algorithms that interact
with data structures. Recommended Exposure Not covered at EOU

Lists
Implement a singly linked or doubly linked list including circular lists. For those
structures implement fundamental algorithms like insert, remove, traverse, delete,
and merge.

Essential Proficient Proficient

Lists Implement an array based list with fundamental algorithms like insert, remove,
traverse, delete Essential Proficient Proficient

Stacks & Queues Implement both stacks and queues using linked lists and arrays. Essential Proficient Proficient

Stacks & Queues Use stacks and queues to implement algorithms. (e.g. basic parsing task using a
stack) Essential Proficient Proficient

BST Implement a node-based BST and fundamental algorithms like insert, contains,
delete. Essential Proficient Proficient Not covered at UO

BST Use appropriate terminology to describe BSTs and their nodes (height, depth,
completness, subtree, etc...) Essential Proficient Not covered at UO

BST Implement pre/in/post order traversals and pick the appropriate strategy for a given
task. Essential Proficient Proficient Not covered at UO

Heaps Implement a binary heap with fundamental operations like add, get min/max, delete. Essential Competence Competence
Hashing & Hash Tables Implement hash tables with fundamental operations like insert, remove, delete. Essential Proficient Proficient

Hashing & Hash Tables Recognize what makes a good (or perfect) hash function. Construct a hash function
for different data types. Essential Competence

Hashing & Hash Tables Use either open addressing or chaining to resolve colisions in a hash table. Essential Proficient Proficient

Self Balancing Trees Describe how a self balancing tree will handle inserting or removing a value. Be
familiar with logic behind AVL and/or RedBlack trees. Essential Competence Competence Not covered at UO

Self Balancing Trees Describe how a B tree is organized and how values would be inserted or removed. Essential Competence Not covered at EOU, UO
Graphs Use appropriate terminology to describe graphs. Essential Competence Not Expected EOU covers in Algorithms.

Graphs
Identify different representations of a graph (adjacency list/matrix) and translate
between them. Essential Proficient

EOU covers in Algorithms.
WOU in Algorithms or math

courses

Graphs
Identify traversal order for breadth first or or depth first searches on a graph.

Essential Proficient
EOU covers in Algorithms.
WOU in Algorithms or math

courses

Graphs
Perform by hand basic graph based algorithms (e.g. shortest path, minimal
spanning tree) Recommended Exposure Not Expected

EOU covers in Algorithms.
WOU in Algorithms or math

courses

CS Core Sequence Outcomes Platforms Tools

7

Category Outcome Importance Proficiency Command Line
Expectations Dissent

Power use of an operating
system

Understand and proficiently navigate a file system including dealing
with complexitites like hidden items and file extensions and basic
permissions. Essential Competent Compentent

Power use of an operating
system

Obtain, install, and configure needed tools in your native OS Essential Proficient

Connect to other systems Use ssh to open a terminal on a remote or virtual machine. Recommended Competent Competent Not at WOU.
Essential at PSU

Connect to other systems Understand the difference between local and remote resources and
manage files on a remote system. This includes making use of
locations like a remote server, in a cloud based service, or a local
VM.

Recommended Exposure

Development tools Execute a program using interpreter or compiler. Essential Proficient Compentent
Development tools Run a program under a debugger to observe computations and

isolate unexpected behavior. Essential Proficient

Development tools Use static analysis and/or dynamic analysis tools such as linters
and memory checkers (as appropriate for language). Essential Exposure

Development tools Use a unit test framework to write/run automated tests. Essential Exposure
Development tools Use language reference documentation, tutorials, and other

resources to figure out new features of a language and to learn new
languages.

Essential Competent

Source control Use git or a similar tool to perform basic operations (init, commit,
checkout) on a code repository. Essential Competent Exposure

Source control Use github or other online code collaboration tools to obtain
assignment starters (cloning, pulling) and submit finished work
(push). Understanding appropriate use in an academic context.

Essential Competent

