
CS 205 Course Description

Overview

CS205, System Programming and Architecture, was designed for students pursuing the OSU/P-
SU/UO variant of the CS Major Transfer Map (MTM). Oregon State University and Portland State
University both require a lower division course focusing on the interface between high-level code and
hardware (CS271 and CS201 respectively. Including the credits for these courses was a critical part of
making the MTM workable. This course, while not exactly equivalent to their courses, articulates to
those courses. CS205 is optional but strongly encouraged for students bound for UofO where, although it
does not directly articulate to a single course, it does provide coverage of some material that is contained
in their lower division sequence.

The core theme of this course is ”What really happens when software runs?” Students should learn
how fundamental parts of C programs map to assembly code and binary representations, how this
assembly is determined by the Instruction Set Architecture of a machine, the high-level structures of
a processor, and the basic facilities provided by an operating system. The particular architecture and
assembly studied is not proscribed - students exposed to any modern architecture should be adequately
prepared for later courses.

For colleges that do not teach C as part of their CS161/162/260 sequence, this course also serves
the essential role of introducing C programming so students are prepared for Junior year courses that
assume a working knowledge of C. Thus, it is assumed that time will be devoted to learning the basics of
C programming in addition to learning how C gets mapped to assembly code. After this course, students
should be able to write moderately complex, well-structured programs using C. Students should also have
experience using a debugger on their code.

Capture The Flag (CTF) style activities that require reading assembly in context and basic dynamic
analysis of code using a debugger are a key component of the course. These are intended as a platform
to develop hands on skills examining compiled code in static and dynamic contexts and are assumed to
be an ongoing thread in the course as opposed to a standalone unit. These activities, or equivalent ones,
must be a part of any implementation of CS205 in order to be acceptable for transfer. To aid instructors
in meeting this requirement, PSU is providing access to the CTF system they have developed (see CTF
section for details).

The 10th week of this course is designated as time to apply and expand the ideas of the course in
a particular context. Three possible approaches - ones that focus on cybersecurity, operating systems,
and designing for performance - are briefly outlined in this document to provide suggested uses for this
week.

1



CS 205 Course Description

Course Outcomes

Any implementation of CS205 should include the following based outcomes.

1. Describe the major components of computer architecture; explain their purposes and interactions
and the instruction execution cycle.

2. Describe a basic instruction set architecture, including the arithmetic, logic, and control instruc-
tions; user and control registers; and addressing modes.

3. Do simple arithmetic in hexadecimal, decimal, and binary notation, and convert among these
notations.

4. Explain how data types such as integers, characters, pointers, and floating point numbers are
represented and used at the assembly level.

5. Write C language programs that use control structures, functions, IO, arrays, and dynamic memory.

6. Describe each step of the compilation process by which C language programs are transformed into
machine code.

7. Explain how high-level programming constructs such as arrays, structures, loops, and stack-based
function calls are implemented in machine code. Recognize and reverse engineer same.

8. Demonstrate and use a debugger to analyze program flow, inspect register and stack contents.

9. Identify and fix performance issues in C programs that are caused by machine level concepts.

10. Explain how the information in this course is important within the overall context of computer
science.

2



CS 205 Course Description

CTF Activities

As mentioned above, implementations of CS205 are expected to use Capture The Flag style activities
to develop hands on skills working with machine level code. Although Capture The Flag style activities
derive from the cybersecurity community, the goal for these activities in this course is not the development
of specific cybersecurity skills. Instead, their goal is to develop the skills necessary to inspect running
machine-level code and the state of memory and understand what is going on. Those are the skills that
serve as a foundation for future courses in operating systems, cybersecurity, compilers, embeded systems,
and any other upper division work involving low level code.

Similarly, while CTF originated as part of competitions where teams compete to solve a series of
increasingly fiendish challenges, implementors of this course are explicitly encouraged NOT to utilize
a competitive structure or focus on open-ended puzzles. Activities adopted from the CTF commu-
nity should be modified to focus on pedagogical effectiveness instead of their utility for differentiating
competing teams based on problem solving skills.

Specific skills students are expected to develop are:

1. Use basic tools (e.g. objdump) to inspect compiled code.

2. Read assembly in context and understand it. In particular, understand code generated by a com-
piler.

3. Use a debugger (command line or visual) to inspect running code and memory.

Sample activities:

1. Given a binary, use basic static analysis (objdump) to find a password or other information.

2. Given a binary, use basic static analysis (objdump) to figure out the proper input to give to cause
a desired output.

3. Given a binary, use a debugger to inspect it while running to figure out the proper input to cause
a desired output.

4. Modify an executable with a hex editor (or running code with a debugger) to enable/disable
functionality (change a branch target).

5. Examine a program and engineer a basic buffer overflow on a stack based buffer to modify other
local data or the return address. Or use a buffer to leak information about a running program.

More advanced CTF-style challenges likely go beyond the intended requirements of this course.
This would include problems that involve: obfuscated code; detailed knowledge of OS constructs (user
accounts); networking; buffer overflows that introduce new code; return oriented programming; or heap
based exploits.

3



CS 205 Course Description

PSU CTF Activities

Dr. Wu-chang Feng at PSU developed a web-based system, https://oregonctf.org/, for running
CTF challenges and CTF style learning activities. A series of activities has been developed at PSU to
support teaching their CS201. Each of these activity requires students to exercise skills to retrieve a
password that is unique to them that verifies they completed the activity. So while students can help
each with the techniques needed to solve each challenge, they cannot provide each other with answers.

Dr. Feng and PSU have agreed to make the system available for schools implementing a CS205 to
use. Schools can either:

• Host their own server using this docker image: https://hub.docker.com/repository/docker/
wuchangfeng/metactf.

• Ask PSU to host a server as a subdomain at oregonctf.org. Contact wuchang@pdx.edu to set this
up.

If you would like to test out the site, you can use https://cs201.oregonctf.org with the demo
account credentials listed on the login page.

The topic outline below lists relevant CTF activities from the PSU problem set under each section.

CS205 Topic List

The listed ordering of topics should in no way be considered prescriptive. While the topics listed
below generally progress from fundamental to more advanced, any particular implementation of CS205
will likely find it advantageous to rearrange or crosscut topics. In particular, because this course covers
both C programming and how C code runs on hardware, there are two possible approaches to teaching it:
1) focus on C programming before diving into assembly and how the code runs; 2) iterate through areas
of C programming and how they are implemented. The topic list is structured in the later manner: it
describes the expected boundaries for C and lower levels of each topic simultaneously. That should not be
understood as precluding teaching the course by first focusing on C and then covering assembly/machine
level topics.

1 Introduction to Systems

The fundamentals of computer systems and architecture that are critical for understanding assembly
and high level performance concerns that are affected by architecture.

1. Fundamental components of a computer system and the fetch, decode, execute cycle.

4

https://oregonctf.org/
https://hub.docker.com/repository/docker/wuchangfeng/metactf
https://hub.docker.com/repository/docker/wuchangfeng/metactf
https://cs201.oregonctf.org


CS 205 Course Description

2. Memory hierarchy and role of caches. Detailed study of caches not required. Focus should
be relative performance of different levels of the memory system and basic principles of cache
management: block transfer and temporal and spatial locality.

3. Role of Operating System as hardware manager.

2 C Development Fundamentals

Writing and debugging a C program that does basic IO. Other topics in C programming are broken
out with their assembly counterparts but could be taught with the fundamentals to make a larger initial
module on C programming.

1. Role of C as portable assembly and high level language.

2. Structure of a basic C program and use of basic IO and file instructions (fopen, printf, fgets, etc...).

3. Compiling and running C code from the command line.

4. Use of a debugger to examine running code at both the C and ASM level. Students should be
familiar with setting breakpoints and examining the contents of registers and memory associated
with symbols.

Relevant PSU CTF(s)

Ch3 00 GdbIntro, Ch3 00 GdbPX, Ch3 00 GdbRegs

3 Compiling, Linking, and Loading

How C code is turned into object files and executables and the structure of those files. Across all
of these areas, the focus is building the level of understanding important for a developer who will use
C in future courses and who will be examining compiled code to understand it. Precise implementation
details of any particular object format, linking process, etc... should not be an emphasis.

1. Compilation process - roles of: preprocessor, C compiler, assembler, linker. Individual components
can be treated as black boxes, but students should recognize the kinds of errors messages that can
result at each phase (linking vs compilation errors).

2. Basic structure of object files. Focus should be on understanding different segments and their
roles.

3. Symbols, symbol tables, and symbol resolution. Emphasis should be on identifying and how symbols
will be matched across object files/compilation units.

5



CS 205 Course Description

4. Relocation and position independent code. Again, focus should not be the details of any particular
implementation, but on the kinds of transformations that happen as code is linked and loaded.

5. Static vs dynamic linking.

6. Use of basic static inspection tools (e.g. objdump)

Relevant PSU CTF(s)

Ch1 LTrace, Ch1 Readelf, Ch7 13 LdPreloadGetUID

4 Data Representation

How data is represented at a low level and how that shapes C programming. Understanding that
these are determined by the architecture of the machine is critical - knowing the details of any particular
architecture is not.

1. Binary, Decimal, and Hexadecimal representations. Converting from one form to another.

2. Data sizes. Bytes and words as the fundamental unit sizes.

3. ASCII char representation.

4. C integer data types and their sizes. Emphasis on platform dependence of these.

5. Enumerations.

6. Machine instruction representation. How features like opcode, registers, and memory addresses
are stored in an instruction.

7. Endianess.

8. Casting in C.

Relevant PSU CTF(s)

Ch2 01 Endian, Ch2 01 Showkey, Ch2 03 IntOverflow, Ch3 02 AsciiInstr

6



CS 205 Course Description

5 Signed Arithmetic and Floating Point

How we do integer math in C and ASM and floating point math in C. (Coverage of floating point
instruction in ASM is not required.) How negative and fractional values are represented at a binary level.

1. Signed integer representation in 2s complement. Negation of signed values at the bit level. Recog-
nition of important patterns (0xF...F is -1; a leading 1 is a negative number).

2. Signed vs unsigned arithmetic. Overflow and its detection. When to use which format.

3. Floating point representation. Memorization of a particular format is not required, but students
should be exposed to an IEEE or IEEE-like format and understand the basic features of floating
point representation: how representational resolution depends on magnitude, the existence of
minimal/maximal representable values, and nan/infinity.

4. The floating point types and their use in C.

Relevant PSU CTF(s)

Ch2 03 TwosComplement, Ch2 05 FloatConvert

6 Bitwise Operations

How to manipulate bits in ASM and C.

1. Bitwise logical operations and their use to manipulate individual bits.

2. Shift/rotate operations.

3. Use of shifts to multiply/divide binary values. The difference between arithmetic and logic shifts.

Relevant PSU CTF(s)

Ch2 03 XorInt, Ch3 05 LorStr

7 Control Structures

C level control structures and their implementation at the ASM level.

7



CS 205 Course Description

1. Conditional structures (including switch) and loops in C.

2. ASM comparison instructions and condition codes.

3. ASM jump/branch instructions including conditional branches.

4. Jump/branch tables.

5. Implementation of C control structures in ASM.

Relevant PSU CTF(s)

Ch3 06 SwitchTable

8 Memory and Pointers

How memory is accessed. Of critical importance is understanding the role of registers in the imple-
mentation of complex C expressions (or in all expressions for load/store architectures).

1. Pointers, addresses and dereferencing in C.

2. ASM movement instructions using immediate values, registers, and memory.

3. ASM addressing modes.

4. The use of the stack to store data via ASM push/pop operations. How that stack is layed out in
memory and how the stack pointer is used to maintain it.

Relevant PSU CTF(s)

Ch3 04 FnPointer, Ch3 04 LinkedList

9 Dynamic Memory

Allocation/deallocation of memory in C and the standard memory model. Memory management in
ASM would be an advanced week 10 extension.

1. Use of free/malloc in C.

2. Heap vs stack. Strengths/weaknesses of allocations in each region.

3. The ”standard” process memory model (and how reality often is more complicated).

8



CS 205 Course Description

10 Functions

Functions in C and their implementation in assembly.

1. Functions in C.

2. Pass by value vs reference.

3. ASM level calling convention - how values are passed and returned.

4. ASM implementation of local memory. Frame pointer and stack allocation/deallocation.

5. Recursive functions - how the stack mechanism allows for reentrant code.

Relevant PSU CTF(s)

Ch3 00 GdbRegs, Ch3 07 ParamsRegs, Ch3 07 ParamsStack, Ch3 07 SegvBacktrace, Ch3 07 StaticStrcmp

11 Arrays and C-strings

Use of arrays and C-strings and working with arrays in ASM.

1. Array allocation (fixed and variable length) and use in C.

2. Multidimensional arrays in C.

3. Pointer arithmetic and its relation to array indexing.

4. Accessing individual array elements and looping through arrays in ASM.

5. C-string related conventions and functions: NULL termination and basic string library functions.

6. Stack based buffer overflow attacks.

Relevant PSU CTF(s)

Ch3 07 CanaryBypass, Ch3 07 StackSmash, Ch3 08 Matrix

9



CS 205 Course Description

12 Heterogeneous Structures

Fundamental tools for grouping (possibly) heterogeneous data.

1. Structs.

2. Unions.

3. Data alignment and byte packing/padding in structures.

13 Optimizations in C

Basic optimizations that compilers do related to concepts from this course. Exploring the effect
of level optimizations in C code. (strength reductions, reducing procedure calls & memory references,
etc...). Coverage of this topic is not expected to be exhaustive - the goals are awareness of why compiled
code often looks very different than what one would expect and how the kinds of low level efficiencies.

1. The kinds of optimizations that compilers routinely make (function inlining, dead store elimination)
when compiling code.

2. The effect of array stride order on performance.

3. Relative performance of floating point and integer math - why we generally favor ints unless we
need floating points.

4. Basic performance optimizations available to high level language programmers: avoiding loop
inefficiencies, reducing procedure calls and memory references, strength reductions.

Relevant PSU CTF(s)

Ch5 08 LoopUnroll

10



CS 205 Course Description

Sample Schedule

Wk Topic
1 Introduction to Systems

C Fundamentals
2 The Compilation Process

Object files
Data Representation

3 Data Representation Continued
Arithmetic Operations
Floating Point

4 Bitwise Operations
Control Structures

5 Memory and Pointers
Dynamic Memory Management

6 C Functions
Implementation of Functions

7 Arrays and C-Strings
8 Structs, Unions, Alignment
9 Performance & Optimizations in C
10 CS205 Topics in Context

11



CS 205 Course Description

Week 10 Options

The tenth week of the course is designed to provide time for instructors to review critical material,
finish up CTF work, and to expose students to applications of concepts from the course in the context
of more advanced topics. While instructors are free to devise their own approach to doing so, three
application areas are provided below as suggestions. For each, some resources are provided as a starting
point.

1 Cybersecurity

Cybersecurity related knowledge and skills are undergoing a rapid increase in interest among students
and employers. Many code level security topics depend directly on the knowledge and skills in this course.
A deeper dive into cybersecurity related topics provides an opportunity to emphasize the practical CTF
challenges and tease more advanced ideas like return oriented programming.

1.1 Reverse engineering

Reverse engineering of software is often done in a static fashion – take a binary and pop it into a
disassembler (ghidra, Cutter (r2 or rizin), IDA). This typically results in a listing of assembly code, either
in list or call-graph form (sometimes both). Being able to read ASM, in any form, makes being able to
reverse engineer software that much easier.

A good in class exercise would be to take a program you know the structure of, and demonstrate
how to reverse it using Cutter. Even better, take a lab that involved dynamic analysis (gdb bomb or
similar) and redo the exercise statically.

Having a sample binary to pop into Cutter here would be a good short HW – have them write a
description of what it does.

1.2 Firmware hacking

Most IoT devices aren’t running x86 processors. Typically, they run some ARM variant, MIPS, or
PPC. While this class doesn’t cover those other architectures, knowledge of ASM is cross-functional. In
other words, knowing ANY assembly language makes it easier to learn assembly language.

A fun alternative to the above suggested homework is to do the same thing. . . but with a binary from
a MIPS or PPC system.

12

https://ghidra-sre.org/
https://cutter.re/
https://www.hex-rays.com/products/ida/


CS 205 Course Description

1.3 ROP

Exploit development nearly always has an assembly component. Even a simple buffer overflow requires
some of the text being used to overflow the buffer to be written in ASM. This is known as shell code.
One common approach to getting the shell code to run is to use a technique known as return oriented
programming, or ROP. At a high level, ROP involves leveraging ret-like instructions to eventually cause
a jump to an address you can control.

A demonstration of a simple ROP chain would be a good in-class exercise, as well as talking about
tools such as ropper or other similar gadget generation tools.

TODO - Kevin to provide a short outline.

2 Operating Systems Programming

Students will generally go on to take an Operating Systems course that is very dependent on the
skills developed in this course. Week 10 of CS205 is an opportunity to provide students with a consumer
perspective on many of the topics they will study in depth in that OS course.

2.1 Exception Handling

1. Exception number

2. Exception table, aka, exception dispatch (jump) table, etc. ISA specific terminology.

3. Exception handler. No discussion of up and bottom halves, just the basic concept.

2.2 System Calls – OS As Privileged Service Provider

System calls are synchronous (traps). At the very least, there should be a detailed example of a
simple C program making one or more system calls mapped down to assembly. The following exemplar is
meant to be walked through line-by-line. This will help reinforce that system calls look just like function
or library calls to the programmer. Modes will be introduced in the process discussion, below. The
emphasis should be on POSIX-compliant system calls.

1. Processes and logical flow control.

2. Concurrent Flows - basically about a gut feel for what it means for 2 processes to be concurrent.
This is a natural follow-on to exceptions and allows us to introduce the idea of a context switch.

3. Process Address Space Layout

13



CS 205 Course Description

4. User and Kernel Modes

5. The Context Switch

6. System Call Error Handling

7. Process Control - fork/exec/wait

Relevant PSU CTF(s)

Ch8 05 PsSignals, Ch8 05 Signals

Resources:

1. Computer Systems - A Programmers’s Perspective, Ch 8; Bryant and O’Hallaron

3 Data Oriented Design and Optimization in Games

While data oriented design and other optimizations are useful in any programming where performance
is a high priority, for many computer users, video games are the most computationally expensive software
packages run on a routine basis. They are a high interest place to explore the kinds of considerations
that go into designing performant software. Topics including memory access in arrays and compiler
optimizations can be reviewed and expanded on and more advanced topics like branch prediction can be
teased.

Resources:

1. The book Game Programming Patterns - available for free online: https://gameprogrammingpatterns.
com/. Chapter 17 is likely the most relevant. Chapters 18-19 and 11 also of interest. Examples in
the book are in basic C++.

2. Game Engine Architecture, Jason Gregory. Chapter 3 is most relevant. https://www.gameenginebook.
com/toc.html

3. Seminal 2009 presentation by Tony Albrecht on optimizing for the PS3: http://harmful.cat-v.
org/software/OO_programming/_pdf/Pitfalls_of_Object_Oriented_Programming_GCAP_
09.pdf

A 2017 followup talk by Tony Albrecht: https://www.youtube.com/watch?v=VAT9E-M-PoE

4. Data Oriented Design in game development talk by Mike Acton: https://www.youtube.com/
watch?v=rX0ItVEVjHc

14

https://gameprogrammingpatterns.com/
https://gameprogrammingpatterns.com/
https://www.gameenginebook.com/toc.html
https://www.gameenginebook.com/toc.html
http://harmful.cat-v.org/software/OO_programming/_pdf/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
http://harmful.cat-v.org/software/OO_programming/_pdf/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
http://harmful.cat-v.org/software/OO_programming/_pdf/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
https://www.youtube.com/watch?v=VAT9E-M-PoE
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=rX0ItVEVjHc


CS 205 Course Description

5. Data Oriented Design to make a faster HTML renderer: https://www.youtube.com/watch?v=
yy8jQgmhbAU

6. Matt Godbolt (of godbolt.org fame) on the cool magic that compilers do and why you should not
assume you can out clever them with hand optimizations: https://www.youtube.com/watch?
v=w0sz5WbS5AM

7. Struct of Array vs Array of Struct organization: https://medium.com/@savas/nomad-game-
engine-part-4-3-aos-vs-soa-storage-5bec879aa38c

15

https://www.youtube.com/watch?v=yy8jQgmhbAU
https://www.youtube.com/watch?v=yy8jQgmhbAU
https://www.youtube.com/watch?v=w0sz5WbS5AM
https://www.youtube.com/watch?v=w0sz5WbS5AM
https://medium.com/@savas/nomad-game-engine-part-4-3-aos-vs-soa-storage-5bec879aa38c
https://medium.com/@savas/nomad-game-engine-part-4-3-aos-vs-soa-storage-5bec879aa38c

	Course Outcomes
	CTF Activities
	CS205 Topic List
	Introduction to Systems
	C Development Fundamentals
	Compiling, Linking, and Loading
	Data Representation
	Signed Arithmetic and Floating Point
	Bitwise Operations
	Control Structures
	Memory and Pointers
	Dynamic Memory
	Functions
	Arrays and C-strings
	Heterogeneous Structures
	Optimizations in C

	Sample Schedule
	Week 10 Options
	Cybersecurity
	Reverse engineering
	Firmware hacking
	ROP

	Operating Systems Programming
	Exception Handling
	System Calls – OS As Privileged Service Provider

	Data Oriented Design and Optimization in Games


