Oregon

Discrete Math Standards
D.1 Set Theory: Operate with sets and use set theory to solve problems.

D.1.1 Demonstrate understanding of the definitions of set equality, subset and null set.

D.1.2 Perform set operations such as union and intersection, difference, and complement.

A. Given 2 arrays of integers, output:

1. all items in both arrays,

2. elements that only exist in array1 not in array2 and

3. the combination of all elements in both arrays – avoid printing duplicates

D.1.3 Use Venn diagrams to explore relationships and patterns, and to make arguments about

relationships between sets.

D.1.4 Demonstrate the ability to create the cross-product or set-theoretic product of two sets.

D.2 Relations and Functions: Demonstrate understanding of relations and functions.

D.2.1 Determine whether simple examples of discrete functions are injective and/or surjective.

D.2.2 Demonstrate ability to interpret examples of simple discrete functions by mapping elements

from a discrete domain to a discrete range.

A. Sieve of Eratosthenes: Using the Sieve, print out the prime numbers between 2 and 10,000.

D.2.3 Demonstrate ability to produce the subset of the cross product of the domain and image of a

relation corresponding to simple examples of relations.

D.2.4 Use concepts of reflexivity, symmetry, and transitivity to establish that a relation is an

equivalence relation.

D.2.5 Design simple algorithms such as hashing, checksum or error-correction functions.

A. Input a string and output its hashed code. Base the hash code on the same mathematics as Java uses for String hashing.

B. CS Unplugged checksum exercise (guessing game
D.3 Modular Arithmetic: Demonstrate understanding of modular arithmetic and its relationship to set

theory.

D.3.1 Perform modular arithmetic operations.

A. Answer worksheet 1 involving modular arithmetic problems

B. Assume you have a circular linked list with only a pointer, top, to the front of the list. Write function that will return the

sum of the integer contents (called num) of every even positioned (0th, 2nd, 4th, 6th, …) node in list.

D.3.2 Demonstrate understanding of the relationship of modular arithmetic to two numbers being

congruent modulo n.

A. Roll 2 dice 100 times and output how many times an even total occurred.

B. Roll a dice until the count the rolls that are multiples of three is 10; then output how many rolls this took.

C. Write function that will:
i. receive an integer and

ii. will then modularly separate the linked list into that many groups.

iii. {if 3 is integer received, then groups would be:

1. Group 0: 0th , 3rd , 6th ,9th nodes, ….

2. Group 1: 1, 4, 7, … and

3. Group 2: 2, 5, 8, …
D.3.3 Solve practical problems or develop algorithms using modular arithmetic or congruence

relations such as creating error detection codes, calculating greatest common factor, and

solving simple coin-change problems.

A. Input an amount of money (integer format) and then output the fewest number of coins required to make change.

Example: If 93 was entered, answer would consist of 3 quarters, 1 dime and 3 pennies, so final answer would be 7

 coins.

B. Using iteration, let user input 2 integers and have computer calculate, using Euclidean Algorithm, the GCF of two

numbers.

C. Using recursion, let user input 2 integers and have computer calculate, using Euclidean Algorithm, the GCF of two

numbers.

D.4 Graph Theory: Understand how graphs of vertices joined by edges can model relationships and be

used to solve a wide variety of problems.

D.4.1 Use graphs to model and solve problems such as shortest paths, vertex coloring, critical

paths, routing, and scheduling problems.

D.4.2 Convert from a graph to an adjacency matrix and vice versa.

D.4.3 Use directed graphs, spanning trees, rooted trees, binary trees, or decision trees to solve

problems.

A. Let user input an infix algebraic expression as a string – including all parenthesis needed to force orders of operations.

Using a stack, write the code that will convert the expression into a pre and postfix expression.

B. AP Test questions (if desired, I can list specifics

C. Create a binary tree to represent a prefix algebraic expression. Now allow user to input a number and have code output

the value that the expression would equal.

D. Write a class TreeVer, including static driver, that contains
attributes:

A Binary Search Tree consisting of TreeNodes of Students {organized by iD}

Name of school

Methods

Non-default constructor (name of school and number of students sent from instantiation line, and then

allow user to fill in the specified number of students (using given stud and TreeNode classes

calcAveGPA (calculates the average gpa of school and returns value to call statement

toString (your own – not using built in toString - displays all information

Main:

Instantiate schoolTree, an object of type TreeVer, and call up all methods once.

D.4.4 Demonstrate understanding of algorithms

 D.4.5 Use matching or bin-packing techniques to solve optimization and other problems.

D.4.6 Compare and contrast different graph algorithms in terms of efficiency and types of problems

that can be solved.

D.5 Combinatorics and Discrete Probability: Understand and apply fundamental counting techniques in

solving combinatorial and probability problems.

D.5.1 Produce all combinations and permutations of sets.

A. Given a collection of items, list all permutations that exist.

D.5.2 Calculate the number of combinations and permutations of sets of m items taken n at a time.

D.5.3 Apply basic fundamental counting principles such as The Pigeonhole Principle, Multiplication

Principle, Addition Principle, and Binomial Theorem to practical problems.

D.5.4 Solve probability problems such as conditional probability, probability of simple events,

mutually exclusive events, and independent events.

D.5.5 Find the odds that an event will occur given the probabilities and vice versa.

D.6 Sequences and Series: Analyze and evaluate sequences and series.
D.6.1 Define, recognize, and discriminate among arithmetic, geometric and other sequences and

series.

D.6.2 Find the explicit and recursive formulas for arithmetic and geometric sequences and use these

formulas to determine a specific term or term number.

D.6.3 Convert between a series and its sigma notation representation.

D.6.4 Find partial sums of arithmetic and geometric series and find sums of convergent infinite

series.

D.6.5 Generate and describe other recursive sequences such as factorials and the Fibonacci

sequence.

A. Let user input a set of three integers: num1, num2 and the length of a Fibonacci series. Have the program output the

final number in the series

B. Let user input a set of three integers: num1, num2 and the length of a Fibonacci series. Have the program recursively

calculate and output the final number in the series.

C. Let the user input an integer and have the computer generate num! (num factorial) both recursively as well as

iteratively.

D.7 Recurrence, Recursion and Induction: Understand and apply recurrence, recursive, and inductive

methods to solve problems.

D.7.1 Use recursive and iterative thinking to solve problems such as population growth and decline,

exponential functions, problems involving sequential change and compound interest.

A Write a function that receives num and calculates enum. So if user typed in 3, your code would calculate e3

a. 1st: 1,

b. 2nd : = 1 + 3/1! Which would be 1 + 3/1 or 4, are you finished loop? No, because 1 and 4 are definitely more than .0001 apart, so we must go again

c. 3rd: 1 + 3/1! + 3²/ 2! = 4 + 9/(2*1) = 4 + 4.5 = 8.5, are you finished loop? No, because 4 and 8.5 are definitely more than .0001 apart, so we must go again

d. 4th: 1 + 3/1! + 3²/ 2! + 33/3! = 8.5 + 27/(3*2) = 8.5 + 4.5 = 13, are you finished loop? No, because 8.5 and 13 are definitely more than .0001 apart, so we must go again

e. 5th: 1 + 3/1! + 3²/ 2! + 33/3! + 34/4! = 13 + 81/(4*3*2) = 13 + 3.375 = 16.375, are you finished loop? No, because 13 and 16.375 are definitely more than .0001 apart, so we must go again (but we’re getting smaller differences now, so

f. if we continue looping process, we will get within .0001 change between loops

D.7.2 Use finite differences to solve problems and to find explicit formulas for recurrence relations.

D.7.3 Use mathematical induction to prove recurrence relations and concepts in number theory such

as sums of infinite integer series, divisibility statements, and parity statements.

D.7.4 Use mathematical induction to analyze the validity of an iterative algorithm.

D.7.5 Describe arithmetic and geometric sequences recursively.

D.7.6 Use understanding of relationship of finite and infinite geometric series, including how the

concept of limits connects them.

D.7.7 Apply recurrence or recursion to the design and understanding of sorting and searching

algorithms.

A. Given and sorted collection of objects, use both the recursive and iterative approach to the binary search to locate a desire item – or state that it doesn’t exist in collection. Discuss benefits and deficits of each approach.

B. Write and analyze the efficiency of iterative and recursive codes for the quick and merge sort.

C. CS Unplugged: Battleships—Searching Algorithms 45

D. CS Unplugged: Lightest and Heaviest—Sorting Algorithms 64
E. CS Unplugged: Beat the Clock—Sorting Networks 71

D.7.8 Analyze algorithms for efficiency, including how the number of steps grows as a function of

the size of the problem.

D.7.9 Compare the efficiency of iterative and recursive solutions of a problem.

A. Input a whole number. Using an iterative approach and then a recursive algorithm convert number to binary – then list

the benefits and deficits to each approach.

B. Recursively and iteratively calculate the GCF of two numbers using the Euclidean Algorithm. Discuss benefits and deficits of each approach.
C. Recursively and iteratively calculate the average of any arraylist contents. Discuss benefits and deficits of each approach.
D. Recursively and iteratively show any linked list backwards. Discuss benefits and deficits of each approach.
E. Recursively and iteratively show an array of any object backwards. Discuss benefits and deficits of each approach.

F. Recursively and iteratively calculate compound Interest: input amount of $ (<1000000) and interest, then output # years to become a millionaire using compound interest. Discuss benefits and deficits of each approach
D.8 Logic: Understand the fundamentals of propositional logic, arguments, and methods of proof.

D.8.1 Use truth tables to determine truth values of compounded propositional statements.

D.8.2 Find the converse, inverse, and contrapositive of a statement.

D.8.3 Determine whether two propositions are logically equivalent.

D.8.4 Identify and give examples of undefined terms, definitions, axioms, and theorems.

D.8.5 Construct logical arguments using laws of detachment, syllogism, tautology, and contradiction;

judge the validity of arguments, and give counterexamples to disprove statements.

D.8.6 Use applications of the universal and existential quantifiers to propositional statements.

D.8.7 Appropriately select and use methods of deductive, inductive, and indirect proof and

determine whether a short proof is logically valid.

D.9 Social Choice: Analyze election data to evaluate different election methods and use weighted voting

techniques to decide voting power within a group. Understand and use fair division techniques to

solve apportionment problems.

D.9.1 Use election theory techniques to analyze election data such as majority, plurality, runoff,

approval, the Borda method in which points are assigned to preferences, and the Condorcet method in which each pair of candidates is run off head to head.

D.9.2 Use fair division techniques to divide continuous objects.

D.9.3 Use fair division techniques to solve apportionment problems.

D.10 Game Theory: Understand and use game theory methods to solve strictly determined games and

non-strictly determined games.

D.10.1 Use game theory to solve strictly determined games.

D.10.2 Use game theory to solve non-strictly determined games.

D.10.3 Use game theory to create models for games.

D.10.4 Use game theory to find optimal mixed strategies such as expected values or payoff values.

D.11 Coding Theory, Compression and Cryptography: Understand coding of alphabets and simple

encryption methods.

D.11.1 Use integer functions to encode alphabets and to create error-checking correcting codes.

D.11.2 Use permutations, combinations of digraph encoding and affine transformation and hash

functions, to create encryption codes.

D.11.3 Demonstrate understanding of asymmetric public key cryptography algorithms such as RSA

and Diffie-Hellman.

D.11.4 Demonstrate understanding of error-detecting and error-correcting codes and data

compression through Huffman codes.

D.12 Algorithm Design: Understand methods of algorithm design and its relationship to data structures.

D.12.1 Design algorithms using recurrence or iteration.

D.12.2 Design algorithms using divide-and-conquer.

A. Write and analyze code for Shell, insertion, selection, heap, and radix sort.

D.12.3 Design algorithms using recursion.

D.12.4 Evaluate the efficiency of an algorithm including the order of complexity of algorithms.

A. Evaluate the efficiency (Big Oh) for the best and worse case scenario for the following sorts: Shell, insertion, selection,

heap, radix, merge and quick (partition).
D.12.5 Demonstrate understanding of the relationship of set theory, relations, functions,

combinatorics, sequences, series, graph theory, and matrices to the design of data structures

and algorithms.

D.12.6 Demonstrate understanding of the relationship of data structures to the design of algorithms

and use this understanding to analyze algorithms.

A. pull out AP exam questions that deal with analyzing data structure choices

B. List situation and then decide whether a hashMap or treeMap would be appropriate data structure.

C. Take all common collection practices: add an item, find an individual item, delete an item, show all items, mathematical process dealing with item, … and then analyze the efficiency of processes using: arrays, arraylists, linked lists (singular, doubly, circular), binary search trees, hash tables (hashMaps), …
Worksheet Material:

1. mod and div problems:
A.
public int change(int value)

{

if(value < 3)

 return value % 3;

else

 return value % 3 + 10 * change(value/3);

}

 What will be returned by the call change(45)?

A.
0
B.
21
C.
150
D.
500
E.
1200

2. Consider the following method.

public int getSomething(int value)

{

 if(value < 2)

 return 0;

 else

 return 1 + getSomething(value – 2);

}

Assume val > 0. What is returned by the call getSomething(val)?

A.
val – 2
B.
val % 2
C.
(val-1) % 2

D. val / 2

E. (val-1) / 2

3. Consider the following method

public void change(int value)

{

 if(value < 5)

 System.out.print("" + value % 5);

 else

 {

 System.out.print("" + value % 5);

 change(value/5);

 }

}

 What will be printed as a result of the call change(29)?

A.
1
B.
4
C.
14
D.
104
E.
401

