	[image: image3.png]TechStart

Education Foundation

Discrete

Math

	Module: Representing Algorithms using PSUEDOCODE
ODE Topic: Algorithm Design
Attributions: Mitch Fry (Chemeketa CC) and John Dalbey, Cal Poly CS
Topic Tags: algorithms, psuedocode

Module Points: 10
Version and date: 1.0, August 2, 2010

[image: image3.png]

Module Introduction
<Any general info about the activity; more detailed attributions, materials needed, relationship to other topics, previous topics that should be completed before attempting this exercise, any miscellaneous info, etc. Editing needed here>
Module Outcomes
This module introduces you to several concepts important for understanding and expressing algorithms. You will gain some experience with reading and writing psuedocode which is one method of expressing an algorithm.

Module Concepts & Background

Algorithms
In mathematics, computing, linguistics and related subjects, an algorithm is a finite sequence of instructions, using an effective, step-by-step procedure for solving a problem. It is formally an effective method in which a list of well-defined instructions for completing a task will, when given an initial state, proceed through a well-defined series of successive states, eventually terminating in an end-state.

Expressing algorithms
Algorithms can be expressed in many kinds of notation, including natural languages, pseudocode, flowcharts, and programming languages. Natural language expressions of algorithms tend to be verbose and ambiguous, and are rarely used for complex or technical algorithms. Pseudocode and flowcharts are structured ways to express algorithms that avoid many of the ambiguities common in natural language statements, while remaining independent of a particular implementation language. Programming languages are primarily intended for expressing algorithms in a form that can be executed by a computer, but are often used as a way to define or document algorithms.

Pseudocode/Structured English
Pseudocode is a compact and informal high-level description of a computer programming algorithm that uses the structural conventions of some programming language, but is intended for human reading rather than machine reading. Pseudo-code typically omits details that are not essential for human understanding of the algorithm, such as variable declarations, system-specific code and subroutines. The programming language is augmented with natural language descriptions of the details, where convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier for humans to understand than conventional programming language code, and that it is a compact and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications that are documenting various algorithms, and also in planning of computer program development, for sketching out the structure of the program before the actual coding takes place. No standard for pseudocode syntax exists, as an algorithm in pseudocode is not an executable program. Pseudocode resembles, but should not be confused with, skeleton programs including dummy code, which can be compiled without errors. Flowcharts can be thought of as a graphical alternative to pseudocode.

A PSEUDOCODE Syntax
(Adopted from Dr. John Dalbey, Cal Poly Computer Science Department)

Pseudocode is a kind of structured English for describing algorithms. It allows the designer to focus on the logic of the algorithm without being distracted by details of language syntax. At the same time, the pseudocode needs to be complete. It describe the entire logic of the algorithm so that implementation becomes a rote mechanical task of translating line by line into source code.

In general the vocabulary used in the pseudocode should be the vocabulary of the problem domain, not of the implementation domain. The pseudocode is a narrative for someone who knows the requirements (problem domain) and is trying to learn how the solution is organized.

Extract the next word from the line (good)
set word to get next token (poor)

Append the file extension to the name (good)
name = name + extension (poor)

FOR all the characters in the name (good)
FOR character = first to last (ok)

Note that the logic must be decomposed to the level of a single loop or decision. Thus "Search the list and find the customer with highest balance" is too vague because it takes a loop AND a nested decision to implement it. It's okay to use "Find" or "Lookup" if there's a predefined function for it such as String.indexOf().

Each textbook and each individual designer may have their own personal style of pseudocode. Pseudocode is not a rigorous notation, since it is read by other people, not by the computer. There is no universal "standard" for the industry, but for instructional purposes it is helpful if we all follow a similar style. However, in ALL pseudocode styles, INDENTATION is VITAL in communicating the blocks of operations that are nested within each of the structures described in the following sections.
The "structured" part of pseudocode is a notation for representing six specific structured programming constructs: SEQUENCE, WHILE, IF-THEN-ELSE, REPEAT-UNTIL, FOR, and CASE. Each of these constructs can be embedded inside any other construct. These constructs represent the logic, or flow of control in an algorithm.

It has been proven that three basic constructs for flow of control are sufficient to implement any "proper" algorithm.

1) SEQUENCE is a linear progression where one task is performed sequentially after another.
2) WHILE is a loop (repetition) with a simple conditional test at its beginning.
3) IF-THEN-ELSE is a decision (selection) in which a choice is made between two alternative courses of action.

Although these constructs are sufficient, it is often useful to include three more constructs:

4) REPEAT-UNTIL is a loop with a simple conditional test at the bottom.
5) CASE is a multiway branch (decision) based on the value of an expression. CASE is a generalization of IF-THEN-ELSE.
6) FOR is a "counting" loop.
SEQUENCE

Sequential control is indicated by writing one action after another, each action on a line by itself, and all actions aligned with the same indent. The actions are performed in the sequence (top to bottom) that they are written.

Example

Example (non-computer)
Brush teeth
Wash face
Comb hair
Smile in mirror

Example

READ height of rectangle
READ width of rectangle
COMPUTE area as height times width

Common Action Keywords

Several keywords are often used to indicate common input, output, and processing operations.

Input: READ, OBTAIN, GET
Output: PRINT, DISPLAY, SHOW
Compute: COMPUTE, CALCULATE, DETERMINE
Initialize: SET, INIT
Add one: INCREMENT, BUMP

WHILE

The WHILE construct is used to specify a loop with a test at the top. The beginning and ending of the loop are indicated by two keywords WHILE and ENDWHILE. The general form is:

WHILE condition

sequence

ENDWHILE
The loop is entered only if the condition is true. The "sequence" is performed for each iteration. At the conclusion of each iteration, the condition is evaluated and the loop continues as long as the condition is true.

Example

WHILE Population < Limit

Compute Population as Population + Births - Deaths
ENDWHILE
Example

WHILE employee.type NOT EQUAL manager AND personCount < numEmployees

INCREMENT personCount
CALL employeeList.getPerson with personCount RETURNING employee
ENDWHILE
IF-THEN-ELSE

Binary choice on a given Boolean condition is indicated by the use of four keywords: IF, THEN, ELSE, and ENDIF. The general form is:

IF condition THEN

sequence 1

ELSE

sequence 2

ENDIF

The ELSE keyword and "sequence 2" are optional. If the condition is true, sequence 1 is performed, otherwise sequence 2 is performed.

Example

IF HoursWorked > NormalMax THEN

Display overtime message
ELSE

Display regular time message
ENDIF
REPEAT-UNTIL

This loop is similar to the WHILE loop except that the test is performed at the bottom of the loop instead of at the top. Two keywords, REPEAT and UNTIL are used. The general form is:

REPEAT

sequence

UNTIL condition

The "sequence" in this type of loop is always performed at least once, because the test is peformed after the sequence is executed. At the conclusion of each iteration, the condition is evaluated, and the loop repeats if the condition is false. The loop terminates when the condition becomes true.
CASE

A CASE construct indicates a multiway branch based on conditions that are mutually exclusive. Four keywords, CASE, OF, OTHERS, and ENDCASE, and conditions are used to indicate the various alternatives. The general form is:

CASE expression OF

condition 1 : sequence 1
condition 2 : sequence 2
...
condition n : sequence n
OTHERS: default sequence

ENDCASE

The OTHERS clause with its default sequence is optional. Conditions are normally numbers or characters indicating the value of "expression", but they can be English statements or some other notation that specifies the condition under which the given sequence is to be performed. A certain sequence may be associated with more than one condition.

Example
 CASE Title OF
 Mr : Print "Mister"
 Mrs : Print "Missus"
 Miss : Print "Miss"
 Ms : Print "Mizz"
 Dr : Print "Doctor"
 ENDCASE

Example
 CASE grade OF
 A : points = 4
 B : points = 3
 C : points = 2
 D : points = 1
 F : points = 0
 ENDCASE

FOR

This loop is a specialized construct for iterating a specific number of times, often called a "counting" loop. Two keywords, FOR and ENDFOR are used. The general form is:

FOR iteration bounds

sequence

ENDFOR

In cases where the loop constraints can be obviously inferred it is best to describe the loop using problem domain vocabulary.

Example

FOR each month of the year (good)
FOR month = 1 to 12 (ok)

FOR each employee in the list (good)
FOR empno = 1 to listsize (ok)

NESTED CONSTRUCTS

The constructs can be embedded within each other, and this is made clear by use of indenting. Nested constructs should be clearly indented from their surrounding constructs.

Example

SET total to zero
REPEAT

READ Temperature
IF Temperature > Freezing THEN
 INCREMENT total
END IF
UNTIL Temperature < zero
Print total
In the above example, the IF construct is nested within the REPEAT construct, and therefore is indented.

INVOKING SUBPROCEDURES
Use the CALL keyword. For example:

CALL AvgAge with StudentAges
CALL Swap with CurrentItem and TargetItem
CALL Account.debit with CheckAmount
CALL getBalance RETURNING aBalance
CALL SquareRoot with orbitHeight RETURNING nominalOrbit
Instructions and Activities
Q1: Reading Algorithms:
The following algorithm (expressed in pseudocode) takes as input a list of numbers (e.g. {4, 5, 99, -4, 0} and {-2, 4} would both be valid inputs):

//==========Start============

INPUT a list of numbers

LET N be the count of the numbers in the list.

DO the following N times:

 LET I = 1

 WHILE (I < N) repeat the following:

 IF the Ith number in the list is greater than the (I+1)th number then:

 Swap the Ith and (I+1)th numbers in the list.

 EndIF.

 Add 1 to I.

 EndWHILE.

EndDO.

PRINT out the list.

//==========END===============

ANSWER THE FOLLOWING:

1. Explain what this algorithm does.

2. What output does the algorithm give on input 4, 3, 2, 1?

3. What output does the algorithm give on input 9, 10, -4, 9?

Q2: Writing Algorithms:
Write an algorithm (expressed in pseudocode) which when given a set of N positive numbers, finds the number with the largest value. (Hint: Let “Max” be initialized to 0 and then loop through the numbers looking for anything bigger that the current value of “Max”. Let “Max” have the newly found larger value and continue looking at each number in the list until there are no more numbers).

Q3: Cultural algorithm research:

All cultures, organizations and groups have activities or protocols that are algorithmic. An example is the rules for “bowing” in Japan that are deeply ingrained in culture and society. These rules are an algorithmic procedure that can be represented in pseudo-code.

a) Research the rules for “bowing” in Japan and write the pseudo-code that would determine when and how to bow.

b) Find a similar custom or rule from your cultural background and write the pseudo-code that represents the custom or rule.
Resources and Materials

<Editing needed>

[image: image1.png]

[image: image2.png]

TechStart Education Foundation www.techstart.org

Creative Common License: Attribution, Non-commercial, Share-Alike
Page 2 of 7

[image: image4.png]TechStart

Education Foundation

