Hashing Project

State Standards D.2.5
 Design simple algorithms such as hashing … functions

Hashing is a process where a key – a value like an ID number, name, … - is used as a search value. The goal is to create a search that is as close to O(1) as possible. To accomplish this task the key must be converted to a numeric value and this value used as a random access position in a collection of information. All of this occurs within Java’s HashMap class but is under the hood. The following discussion takes a student through the entire process from encoding key to applications using different data structures.
I. Encoding
- get key

- if possible and practical, create a hash function that is a mathematical function

(1-1 and onto
- discover if solution is practical and, if not,

- adapt solution to maximize speed while minimizing memory waste.
Brainstorm potential solutions:
A. convert to ASCII and add values:
a. AB becomes 65 + 66 = 131,
b. but unfortunately BA also = 131.
B. …. Other brainstorming
C. To create uniqueness, need to have a metaphor; where else do we have items that have the same elements but different values?
a. Numbers (123 never mixed up with 321; why?
i. Place values (one hundreds 1, tens 2 and ones 3 does not equal one hundreds 3, tens 2 and ones 1.
b. How do we make same process for letters?
i. Our base 10 number system works because possible digit values are 0-9, so the largest value in one column is smaller than any non-zero value in the preceding column – i.e. 1 in 10’s column greater than 9 in 1’s column.

ii. How can this be replicated with letters?

1. First, 26 letters, so use values 1-26; {space as 0)

2. therefore, need base 27.

iii. Would all values be unique? Test:

1. AB (B = 2 in 270 column, and A = 1 in the 271 column, so AB = 2 + 27 = 29; whereas,

2. BA (A = 1 in 270 column, and B = 2 in the 271, so BA = 1 + 2 * 27 = 1 + 54 = 55

3. test looks good

D. So what is the algorithm?

a. For pos = 1 to length of number

i. Grab onto letter in this position of string

ii. Convert it to ASCII

iii. Sum conversions

b. Sample Java code

E. Evaluations of hash code:

a. Benefits:

i. 1-1

ii. Onto

iii. Not too complex

b. Deficits:

i. For practical purposes, far too big, example – small name – “Ana Perez” encodes to 2.8764478462E10, far too big for practical purposes.
c. Solutions:

i. Goal:

1. as close to 1-1 and onto as possible, yet

2. small enough number to be reasonable

ii. Solutions:

1. change base from base 27 to more practical number (2 ends up working fine

2. mod by capacity of file or array

3. Problems:

a. Collisions – must handle

i. Coding {explained in Teaching section below } and

ii. Wasted space:

1. capacity and

2. load factor

b. Speed – Big Oh

F. Java code located at bottom of document

G. Now create a data structure using hashing.

Project
Hashed Array of Classes
a) Hard run - grade for:

i) Print style

ii) Based on the discussed algorithm, create a hashed code. Include a name and at least three other fields that would be applicable to any hobby or club you belong to. Then use exactly the following data:
(a) Add the following names:

(b) name other information
(c) ZZZZ whatever

(d) AAA "

(e) AA "

(f) BBB "

(g) BAB

(h) A

iii) Show all information in chart form.

iv) Show one item, appropriately titled.

v) Delete one item, add a different one, and change some information, other than a name.

vi) Show all.

vii) Undelete item previously deleted.

viii) Show all.

ix) Hard copy

x) Appropriate class functions

(1) functions less than one screen length

(2) only instance variables are “global”

xi) Documentation

(1) Variable choice - variables make sense

(2) Comment

(a) whole program

(b) each function

(c) "Any line of code programmer had to think about."

Teaching process:
xii) Problem: accessing a vector

(1) Sequentially (O(n/2)
(2) binary – given sorted list (O(log n);

 without sort (at best O(n log n + log n) or O((n+1) log n)
(3) hashed – O(1) (hashed function listed above
xiii) Goal: 1‑1 correspondence between key and record position.

xiv) How:

(1) Base 26

(a) benefit - no collisions

(b) deficit - number too large

(c) Base 2 variation w/ Mod addition

xv) Shell:

(1) Outline

(2) Sequence of attack - discuss attack approach and order – GREAT DISCUSSION !!! Also code and then test each of these elements, saving code each time with a new name (hash1, hash2…).

(a) Init

(b) Show all

(c) Add

(d) Show one

(e) Delete

(f) Change

(g) (Undelete)

(3) DO NOT hand students information, let class discussion dig to find answers.

(a) why static length?

(b) why mod?

(c) garbage collection

(d) collisions

(e) debugging helps

Pseudocode:

Index
 Contents

	0
	empty - 0

	1
	empty – 0

	2
	empty – 0

	3
	empty – 0

	4
	empty – 0

	5
	empty – 0

	6
	empty – 0

	…
	

	
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty - 0

Index
 Contents

	0
	empty - 0

	1
	empty – 0

	2
	AB - 16

	3
	empty – 0

	4
	empty – 0

	5
	empty – 0

	6
	empty – 0

	…
	

	
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty - 0

Index
 Contents

	0
	empty - 0

	1
	BA – 15

	2
	AB – 16

	3
	empty – 0

	4
	empty – 0

	5
	empty – 0

	6
	empty – 0

	…
	

	
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty - 0

Index
 Contents

	0
	empty - 0

	1
	BA – 15

	2
	AB – 16

	3
	empty – 0

	4
	xx - 15

	5
	empty – 0

	6
	empty – 0

	…
	

	
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty - 0

Index
 Contents

	0
	empty - 0

	1
	BA – 15

	2
	AB – 16

	3
	empty – 0

	4
	xx - 15

	5
	empty – 0

	6
	empty – 0

	…
	

	
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty - 0

Index
 Contents

	0
	empty - 0

	1
	BA – 15

	2
	AB – 16

	3
	empty – 0

	4
	xx - 15

	5
	empty – 0

	6
	empty – 0

	…
	

	
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty - 0

Index
 Contents

	0
	empty - 0

	1
	BA – 15

	2
	AB – 16

	3
	empty – 0

	4
	xx - 15

	5
	empty – 0

	6
	empty – 0

	…
	

	
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty - 0

Index
 Contents

	0
	empty - 0

	1
	BA – 15

	2
	AB – 16

	3
	empty – 0

	4
	xx - 15

	5
	empty – 0

	6
	empty – 0

	…
	

	
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty - 0

Index
 Contents

	0
	empty – 0

	1
	BA – 15

	2
	empty – 0

	3
	empty – 0

	4
	xx – 15

	5
	empty – 0

	6
	empty – 0

	…
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty – 0

Delete

Now problems occur ‑ what if key hashes to a record w/”empty” in it; we now don’t know whether an item used to exist at this spot or not. This becomes a problem when we are looking for a value like “xx”. Remember, “xx” hashes to 2 but was placed in position 4 because “AB” already occupied position 2. Well one way to solve the situation is to place another value in a deleted spot that can signify that the value has been deleted, so it can be reused, but at other times we know something used to be at this location. A good, possible solution would be to place the word “Deleted” in place of “empty”.

 So now the vector will look like:

Index
 Contents

	0
	empty – 0

	1
	BA – 15

	2
	Deleted – 0

	3
	empty – 0

	4
	xx – 15

	5
	empty – 0

	6
	empty – 0

	…
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty – 0

Index
 Contents

	0
	empty – 0

	1
	BA – 15

	2
	Deleted – 0

	3
	empty – 0

	4
	Deleted – 15

	5
	empty – 0

	6
	empty – 0

	…
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty – 0

But now that we’ve made this change (inserting “Deleted”) other problems may be created ‑ what, if any, changes must be made in add or show one, when we add this new item?

Adding ‑ becomes:

get key (“zz” and age 15

hash it (say it hashes to 2

do

mod by 150

go to spot

if empty or Deleted

putin

else if another name

+ length

while not putin

Show one ‑ becomes

get key (“zz”

hash it (it hashes to 2

do

mod by 150

go to spot

if empty

“Not in list”

done

else if = name

show info

done

else if another name {“Deleted” is handled like any other name –

something used to be here, so our name could

be built off of it.}

+ length

while not done

Also now is the time to note that show one and delete are identical except for one additional section when the file item = the key. Therefore their pseudocode can be combined into:

get key (“zz”

hash it (it hashes to 2

do

mod by 150

go to spot

if empty

“Not in list”

done

else if = name

show info

if menuchoice was delete

put “Deleted” in for name

done

else if another name {“Deleted” is handled like any other name –

something used to be here, so our name could

be built off of it.}

+ length

while not done

Our next task is Change. As we work on this code, we note that it has the exact same rhythm as delete and show one, so

Index
 Contents

	0
	empty - 0

	1
	BA – 15

	2
	AB – 16

	3
	empty – 0

	4
	xx - 15

	5
	empty – 0

	6
	empty – 0

	…
	

	30
	empty – 0

	31
	empty – 0

	32
	empty – 0

	33
	empty – 0

	…
	

	147
	empty – 0

	148
	empty – 0

	149
	empty – 0

Show All:

Now adapt your show all by:

1. creating subvector containing only ~delete and ~empty values,

2. sort this subvector by the key value,

3. show information.

Additional Elements

1. An important extension resolves the rare possibility of the search process rounding

 around on itself.

Example: What if, within a vector with item 0 ‑ 40, six names hash to 10 and have a name length of 10. Then when the last name was added, it would create an endless loop. Several solutions exist for this problem. One is to keep a counter and after a number {a good value might be number <= the vector length / name length} an offset is added. This process must be incorporated throughout all sections of the code.

2. Changing key value is another logical extension. Although the algorithm that is developed to solve this problem is fairly easy, implementing it seems to cause problems for students. The “one bite of banana” philosophy is key here(before attempting this addition, save all code with a new name.

a) Algorithm: if an name (key value) is to be changed:

i) delete old position

ii) add at new spot

b) Code: be very careful with combo ChangeDeleteShowOne function.

3. Keep the original show all in its present form as a programmer's aid to debug/check future changes. Change the name of original functions to ProgShow and do not put it in the users menu (perhaps as option 99.

4. Option to rehash. If user overloads file, it decreases time savings, so may have section that will increase the vector size and the recreate vector by rehashing all elements and wiping out old vector.

5. An unerase option can easily be incorporated. Instead of inserting DELETE when erasing an item, just concatenate some flag, say '-', in front of the key. Then when searching for an item, '-' will replace DELETE throughout the pseudocode above. When the unerase option is selected, hash, and then check beyond the first element for a match. If equality exists, then just eliminate the '-'. Of course this process won't solve the situation when a new name has already been added over the previously deleted items, or if a rehashing technique has been applied. This process is a great metaphor for restoring files, which have been deleted from a disk.

6. Indexed vectors can also occur. An example is if two keys, say name and social security # are desired. Three vectors are created. When a person is to be added most of their information is just added to the end of a general vector. Then their name is hashed to a name vector that includes their name and the position in the general vector, where the bulk of the info is stored. The same is done with their social security number in a separate vector. With deletions, a garbage collection device can be prepared to "reuse" the general vector positions that will now be available. Now information can be sorted by name or by social security number. Of course this process can be generalized to whatever extent desired.

7. Depending on languages and timing of instruction, data structures used can vary:

a) To replicate Java’s HashMap, an array (or ArrayList) of queues can be use where collisions are handled by adding onto queue located at hashed codes position.

b) To deal with languages or algorithms without “dynamic” arrays (ArrayLists or AP C++’s apvector), a linked list of queues can be used in the same manner as 7.a’s ArrayList of queues.

c) …
/**

 *

 * @author Don Kirkwood

 * @version 2010

 */

public class HashDriver

{

 public static void main()

 {

 int capacity = 100;

 Hashing h1 = new Hashing("AB",capacity);

 //System.out.println(h1.accessPoorHashNum());

 h1.showPoor();

 Hashing h2 = new Hashing("Ana Perez",capacity);

 h2.showGood();

 Hashing h3 = new Hashing("Ana Perez",capacity);

 System.out.println(h3); // showing Better
 }

}
/**

 *

 * @author Don Kirkwood

 * @version (2010)

 */

public class Hashing

{

 private String word;

 private int capacity;

 /**

 * Constructor for objects of class Hashing

 */

 public Hashing()

 {

 word = "";

 capacity = 100;

 }

 /**

 * Non-default constructor for objects of class Hashing

 *

 * @param w receives a String to hash

 */

 public Hashing(String w, int c)

 {

 word = w;

 capacity = c;

 }

 /**

 * @return hashed (non 1-1, onto) value of word

 */

 public int accessPoorHashNum()

 {

 int ascii, tot = 0;

 char letter;

 for (int pos = 0; pos< word.length(); pos++)

 {

 letter = word.charAt(pos);

 ascii = (int)letter;

 System.out.println(pos + ". "+letter + " = "+ascii);

 tot+=ascii;

 }

 return tot;

 }

 /**

 * @return hashed value of word

 */

 public double accessGoodHashNum()

 {

 double val, tot = 0, exp = 0;

 int ascii;

 char letter;

 for (int pos = word.length()-1;pos >=0; pos--)

 {

 letter = word.charAt(pos);

 if (letter != ' ')

 {

 ascii = (int)letter-64; // Want A to still be 1 not 0

 val = ascii * Math.pow(27,exp);

 System.out.println(pos + ". "+letter + " = "+val);

 tot+=val;

 exp++;

 }

 }

 return tot;

 }

 /**

 *

 * @param capacity receives the capacity of hash mapping

 * @return better hashed value of word

 */

 public double accessBetterHashNum(int capacity)

 {

 double val, tot = 0, exp = 0;

 int ascii;

 char letter;

 for (int pos = word.length()-1;pos >=0; pos--)

 {

 letter = word.charAt(pos);

 if (letter != ' ')

 {

 ascii = (int)letter-64; // Want A to still be 1 not 0

 val = ascii * Math.pow(2,exp);

 System.out.println(pos + ". "+letter + " = "+val);

 tot+=val;

 exp++;

 }

 }

 return tot % capacity;

 }

 /**

 * Display poor hash code

 */

 public void showPoor()

 {

 System.out.println(word + " converts to "+accessPoorHashNum());

 }

 /**

 * Display good hash code

 */

 public void showGood()

 {

 System.out.println(word + " converts to "+accessGoodHashNum());

 }

 /**

 * @return word and its hash value

 */

 public String toString()

 {

 return word + " converts to "+accessBetterHashNum(capacity);

 }

}
Actual_PseudoCode:

 Init:	

set all values to “empty” and 0.

Show all:

	Just display all vector items, including,

	at this time, the record #s.

 Add:	

	Sample:

		get key (“AB” and age 16

		hash it (2

		do

			mod by 150

			go to spot

			if empty {it is }

				putin

			else if another name

				+ length

		while not putin

		

 Add Sample 2	

		get key (“BA” and age 15

		hash it (1

		do

			mod by 150

			go to spot

			if empty {it is }

				putin

			else if another name

				+ length

		while not putin

 Add Sample 3	

	

		get key (“xx” and age 15

		hash it (say it hashes to 2

		do

			mod by 150

			go to spot

			if empty {1st it is NOT }

				putin

			else if another name

		+ length (spot

				becomes 4}

		while not putin

 Show One Sample 1

	

		get key (“AB”

		hash it (it hashes to 2

		do

			mod by 150

			go to spot

			if empty

				“Not in list”

				done

	else if = name {it is }

		show info

				done

			else if another name

		+ length

while not done

 ShowOne Sample 2	

	

		get key (“zz”

		hash it (say it hashes to 31

		do

			mod by 150

			go to spot

			if empty { it’s heeere}

				“Not in list”

				done

	else if = name

		show info

				done

			else if another name

		+ length

while not done

 ShowOne Sample 2	

	

		get key (“xx”

		hash it (it hashes to 2

		do

			mod by 150

			go to spot

			if empty

				“Not in list”

				done

	else if = name {2nd}

		show info

				done

			else if another name {1st}

		+ length

while not done

 Delete Sample 1

	

		get key (“zz”

		hash it (say it hashes to 31

		do

			mod by 150

			go to spot

			if empty { it’s heeere}

				“Not in list”

				done

	else if = name

		rewrite empty-0

				done

			else if another name

		+ length

while not done

 Delete Sample 2	

	

		get key (“AB”

		hash it (it hashes to 2

		do

			mod by 150

			go to spot

			if empty

				“Not in list”

				done

	else if = name

		rewrite empty-0

				done

			else if another name

		+ length

while not done

Delete: Sample 2

Now delete “xx”

get key (“xx”

hash it (it hashes to 2

do

	mod by 150

	go to spot

	if empty

		“Not in list”

		done

	else if = name {2nd time}

		rewrite empty-0

		done

	else if another name {hits “Deleted”}

+ length

while not done

Change:

get key (“zz”

hash it (it hashes to 2

do

	mod by 150

	go to spot

	if empty

		“Not in list”

		done

	else if = name

show info

if menuchoice was delete

	put “Deleted” in for name

else if mc was change {other than

 name – name dealt w/below}

	get new info

		done

	else if another name

+ length

while not done

