Modular Arithmetic

D.3.3

coin change and Euclidean GCF

One of the most frustrating situation for a new programmer (or, at times,  even for we old timers) is when we can solve a problem easily in our heads, but struggle to figure out an algorithm to have “this stupid” computer to solve the problem.  One of the benefits of experience is that if a collection of such problems is studied at times a commonality seems to pop up and that is the use of MOD and DIV {integer division} operations.  Giving instructions, “whenever you can do a mathematical process easily in your head, but can’t figure out how to code the solution, think of mod or div” seems to work for far more problems that one might expect.  So how and why does this work?  

Coin Change Problem
As we introduce programming one of the common problems given to students is:  given an amount of change, less than $1, give the fewest coins necessary to make this amount.  So if change is 81 cents, the answer would be 3 quarters, 1 nickel and 1 penny.  Another example is if change is 68 cents, the answer would be 2 quarters, 1 dime, 1 nickel and 3 pennies.  Now this is easy in our heads, but rather unique solutions occur if students are asked to code – many of them very convoluted and non-working.  The solution is radically simplified by using mod and div operations
.  
Problem definition:  get an amount of money (use an integer) and then state fewest 

denominations needed to make change.

Pseudocode:


Get change


Count number of quarters


Get change left over


Count number of dimes


Get change left over


Count number of nickels


Get change left over – this amount is number of pennies
A solution, in Java, is as follows:
        int money,change, num25, num10, num5, num1;

        System.out.println("Type in an amount of change");

        money = TextIO.getlnInt();

        change = money;

        num25 = change / 25;  
// Java:  int / int truncates, ie DIV

        change = change % 25; 
// Java:  % is operator for mod

        num10 = change / 10;

        change = change % 10;

        num5 = change / 5;

        num1 = change % 5;

        System.out.println(money + " is broken down into:\n"+ num25 + " quarters\n" +

                          num10 + " dimes\n" +

                                                                                                  num5 + " nickels\n" +

                                                                                                  num1 + " pennies\n");

Creating worksheets with practice problems is very advisable as students tend to think they have the math down until they actually have to use mod and div commands – practice and fluency will really help with higher level applications.

Tallying Even and Odd Totals
Another frequent use of mod are problems that deal with multiples or even/odd decisions.  A simple example would be to roll a pair of regular dice 100 times and tell which occurred more often even or odd totals.  Once again, this is a problem that students can do innately but get confused (potential mental hyperventilation) when having to code solution.  An approach follows:
        int dice1,dice2,totalRoll,numEven=0, numOdd=0;

        Random pick = new Random();

        for (int time = 0; time  < 100; time++)

        {

            dice1 = pick.nextInt(6)+1;

            dice2 = pick.nextInt(6)+1;

            totalRoll = dice1+dice2;

            System.out.println("#"+time+" roll:  "+totalRoll);

            if (totalRoll % 2 == 0)

                numEven++;

            else   // could just leave this off and use 100/2 as midpt

                numOdd++;

        }

        System.out.print("\nNumber even rolls = "+numEven+

                         " and number odd rolls = "+numOdd);

        System.out.print("\nThe type of totals rolled most frequently was ");

        if(numEven > numOdd)  // could just compare to 50 --> 100/2

            System.out.println("even\n");

        else

            System.out.println("odd\n");
The same approach (num mod 2 = = 0) can also be used to trap other multiples.  For example, to check if something is a multiple of 5 just use num mod 5 = = 0.

There are two further examples of modular operations that students tend to really enjoy.  The first is the ability to calculate a greatest common factor of a pair or group of numbers.  The way most students learn is to use a factor tree breaking down numbers into their primes and then taking all the bases with their highest powers.  This is ideal for understanding the concept, especially if a visual binary tree is used, but is, once again, awkward to code.  An ideal solution is the Euclidean Algorithm
.  An example of this process is as follows:

A. Numbers are 28 and 24 ( make Num1 = 28 and  Num2 = 24
B. 28 / 24 = 1 remainder 4,  now make num1 = num2 and num2 = remainder, so num1 = 24 and num2 = 4
C. Now repeat the process with new values:  24 / 4 =  6  remainder 0, now make num1 = num2 and num2 = remainder, so num1 = 4 and num2 = 0

D. Now since the remainder is 0, the GCF is num1 = 4
Before attempting to pseudocode this process, much less code it, practicing several actual problems is recommended. Once a clear understanding of the mathematics is solidified, this algorithm can be coded either iteratively or recursively.  Although there are no syntactical or memory benefits to the recursive approach, it sure looks cool!

Iterative approach:

int num, denom, remain;



TextIO.put("Type in numerator of fraction:  ");



num = TextIO.getlnInt();



TextIO.put("Type in denominator of fraction:  ");



denom = TextIO.getlnInt();



System.out.print("The GCF of "+num+" and "+denom+ " is ");



do



{




remain = num % denom;




num = denom;




denom = remain;



}



while ( remain != 0);



System.out.println(num);

Recursive approach:

public static int GCF(int num, int denom)  // could be compressed, but 

        //           may lose clarity



{




int remain;




remain = num % denom;




if (remain != 0)




{





return GCF(denom, remain);




}




else





return denom;



}

Another application of modularity is the number theory example of perfect numbers.  A number is perfect if it is equal to the sum of all factors of the number – excusive of the number it self.  Six is a perfect number because its factors 1, 2, and 3 sum to equal 6, but 8 is not perfect because its factors:  1, 2, and 4 add up to 7 not 8.  Once again, discussing the algorithm before coding the answer is key to developing the problem solving ability in students.  

Problem definition:  input an number and then state whether it is a perfect number or not.

Pseudocode:



Go through all possible factors from 1 to number div 2 

{ largest factor is, at most, ½ number}




Does factor go into number evenly





If so add to sum



If sum = original number




Number is perfect



Else




Number is not perfect

Code:
        System.out.print("Type in number to see if it's perfect:");

        num = TextIO.getlnInt();

        for (factor = 1; factor <= num/2; factor++)

            if ( num % factor == 0 )

                tot+=factor;

        if ( num == tot)

            System.out.println(num+ " is perfect");

        else

            System.out.println(num+ " is not perfect");
There are a wide variety of more advanced practical applications for mod and div from ensuring a hashCode is within capacity to sorting using the Shell algorithm.  The key is to  have students can solidify the concept that, when a process seems easy to do mentally but hard to do in code, the operators mod and div show up far more frequently than may be logical, they will be far more successful.
Unique application of modular classes is the art work alluded to at:
http://britton.disted.camosun.bc.ca/modart/jbmodart.htm

� Mod and Div:  Remembering elementary school division will help here. Mod calculates the integer remainder and Div the integer quotient of a division problem; therefore,  8 mod 2 = 0 because 8 ÷ 2 = 4 with no remainder and 8 div 4 = 2.  On the other hand 23 mod 8 = 7 and 23 div 8 = 2 because 23/8 produces 2 remainder 7.


� Euclid describes process in Books VII and X of Elements





