Recursion vs. iterative:
GCF, Factorial, Fibonacci, Binary search D.7.9
1st a discussion on recursion is necessary and then comparisons can be made. Recursion a process defined it terms of itself – rarely said, but don’t think too much, let recursion do the work for you.

I) Introduction: start with exponentiation:

A) Iterative definition: 24 = 2*2* 2*2, code w/for loop:

(1) Iteration actually the best solution

(2) At end of recursion discussion be ready to give reasons for iterative being better – or when recursion would be best

B) Recursive definition: 24 = 2 * 23
23 = 2 * 22

 22 = 2 * 21

21 = 2 * 20

{math definition}
 20 = 1

21 = 2 * 1 = 2

 22 = 2 * 2 = 4

23 =
2 * 4 = 8

24 = 2 * 8 = 16

Notice how this process had to build its way in and then obtained the answer as it worked its way back out (nontail-end recursion.

C) How would this process be coded?
(1) First, look at what makes the process end – or, what would occur if you inputted a value (in this case 0) that would not call anything recursive (this is called the base case or exiting condition. With exponents, this occurs if the exponent is 0; so, the base case would be:

if exp = = 0

return 1

(2) Now, what is the recursive section? Well, all times, other than the exiting

condition, are of the following form:

return base * pow(base, exp-1) which is
2 * 2n-1

(3) So, what would this look like altogether?

double pow(int base, int exp)

{

if (exp == 0)

return 1;

else

return base* pow(base, exp-1);

}

D) Now that we see the code, how does it actually run in the computer?

Main body call

Once we get to the base case, the computer starts dealing with function calls. Remember that whenever a function is finished, it returns its value back to the exact location of its call statement. Also keep in mind that even though you and I know that each of these calls is back to the function that we’re already working in, the computer has no knowledge or need to know this, it is just calling up another function. Whether this “new” function has the same name as the function its working in now or not makes no difference to the computer’s operation.

Main body call

Now 1 is returned to where the 5th call of pow occurred.

Main body call

Now 2 is returned to where the 4th call of pow occurred.

Main body

call

Now 4 is returned to where the 3rd call of pow occurred.

Main body

call
Now 8 is returned to where the 2nd call of pow occurred.

Main body call
Finally 16 is returned to where the main call of pow occurred.

E) This process also shows why recursion is not a good process to solve this problem. The recursive solution is not an easier algorithm and doesn’t shorten the code, but it also eats up memory - each call makes new memory locations for the value parameters. So the only purpose of making this a recursive process is to gain knowledge into the workings of recursion, and, therefore, wouldn’t actually be used for exponentiation.

II) A good example of tail-end recursion might be appropriate here. A simple example might be the Euclidean algorithm for finding a GCF { a great trick for student to learn in an actual math class}.
A) Algorithm:

(1) Find the integer remainder (MOD) of the division of two integers.

(2) If this remainder is 0 then the GCF is the divisor.

(3) If not, the dividend becomes the old divisor and the new divisor is the remainder.

(4) This process, steps 1-3, continues until (2) is true.

B) An example would be (if dividend = 24 and divisor = 56,

(1) 24 mod 56 = 24 (notice, no need to trap which starting element is largest, if needed, the process will automatically switch them.)

(2) now dividend = 56 and divisor = 24,

(3) 56 mod 24 = 8, which is not 0 (perhaps too obvious to mention,

(4) now dividend = 24 and divisor = 8,

(5) 24 mod 8 = 0,

(6) now condition (2) has been met, so a GCF of 8 will be returned.

C) This is tail-end recursion, because once you’ve attained your goal (8), you have the answer and nothing changes on the way back out. Visually this would look like:

Main body call:

Notice, once process has built its way into the third level, it gets 8 and then, without any changes, it just returns this to the original call statement, hence tail-end recursion.

III) This same process can/should be followed by several more examples. After this a couple of patterns should become obvious – but may need to actually list out process – give them the framework:

A) Functions:

(1) non-tail-end: mathematical operations added to recursive call

return (base * pow(base,exp-1);

(2) tail-end: NO mathematical processes joined with recursive call

return (remain); or return (top); // adding to a tree

B) Procedures:

(1) non-tail-end: probably (very large %) NO elses, otherwise some section of process will be left off (show all with tree)

(2) tail-end: probably else (don’t want to access any other information after goal is met (showing an entire Fibonacci sequence

IV) There are patterns that might be helpful for students tail-end

A) procedure or function Fibonacci sequence

B) procedure display linked list forward

C) function Euclidean GCF

D) function binary search

V) non-tail-end

A) function exponentiation

B) function factorial

C) procedure display linked list backwards (first real example)

VI) Look at all of the AP AB exams problem #4 (tree questions

VII) Deficits of recursion
A) memory

B) confusion (especially at first)

C) can be very difficult to debug

VIII) strengths

A) sometimes less code

B) may fit natural thought process (once trained)

C) just the intellectual beauty of recursion is worth the experience (true nerd-dom
D) some processes are very difficult to solve otherwise
IX) Homework examples:

A) Static examples

(1) Factorials

(2) Fibonacci #

(3) show and array: forwards or backwards

(4) binary search

(5) graphic examples:
(a) fractals,
(b) Mandelbrot Set

B) Dynamic Linked Lists

(1) Stack - could start with APStack and then work to dynamic

(a) Standard

(b) Polish notation

(2) Queue – once again, could start with APQueue and then work to dynamic

(a) standard (note structure of pointers

(b) reservation system or bank line

(3) Other Linked Lists

(a) Circular

(b) Doubly

(c) insertion (HL)

(d) generic
base = 2

exp = 2

return 2 *

base = 2

exp = 3

return 2 *

base = 2

exp =4

return 2 *

base = 2

exp = 0

return 1

base = 2

exp = 1

return 2 *

base = 2

exp = 2

return 2 *

base = 2

exp = 3

return 2 *

base = 2

exp =4

return 2 *

base = 2

exp = 1

return 2 * 1

base = 2

exp = 3

return 2 *

base = 2

exp = 2

return 2 * 2

base = 2

exp =4

return 2 *

base = 2

exp = 3

return 2 * 4

base = 2

exp =4

return 2 *

base = 2

exp =4

return 2 * 8

divid = 24

divisor =56

remain = 24

return

divid = 24

divisor =8

remain = 0

return 8

divid = 56

divisor =24

remain = 8

return

